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Abstract  

Corn is one of the most crucial crops in the worldwide. Sometimes, corn 

production decreases due to disease, which can affect our food chain and 

food security. But early detection of the disease is essential for effective 

food production. In this study, we develop a custom Convolutional Neural 

Network (CNN) model for corn leaf disease classification with Explainable 

AI (XAI) techniques such as SHAP (SHapley Additive exPlanations) and 

LIME (Local Interpretable Model-agnostic Explanations). For this 

proposed model, we use four classes of corn leaf conditions, such as 

Healthy, Blight, Common Rust, and Gray Leaf Spot. Custom CNN model 

with XAI, we aim to provide actionable insights into the model’s decision-

making process for AI-driven agricultural solutions. Our CNN model 

achieved a training accuracy of 99.94%, validation accuracy of 92.71%. A 

comparative analysis with pre-trained CNN models such as ResNet50, 

VGG16, MobileNetV2, and DenseNet121 underscores the effectiveness 

of the custom model in balancing accuracy. We demonstrate SHAP, 

LIME, and GRAD-CAM to correctly analyze the area of the disease. The 

results demonstrate the potential of integrating XAI with deep learning to 

revolutionize disease detection in agriculture.  
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 INTRODUCTION  

Agriculture plays a crucial role in the global population. Corn 

is one of the most important crops worldwide, and it is also 

the most nutritious among all other crops. Corn is the third-

largest food source in human civilization. However, the corn 

production can be threatened by various leaf diseases and 

making our food chain system insecure and economically 

imbalanced. But if the leaf disease in the early stage is 

detected, we can use disease management effectively and 

ensure the best food production. 

The recent advancement of deep learning and computer 

vision reflects a great effort to automatically detect and 

classify diseases.  Convolutional Neural Network with 

enhanced interpretability, making the models more useful. 

Our contributions can be summarized as: 

(i) We develop a CNN-based model for maize leaf 

disease detection and integrate SHAP and LIME to enhance 

the interpretability of the model’s predictions. 

(ii) By applying SHAP and LIME, we provide detailed 

insights into how the model arrives at its decisions, enabling 

users to better understand and trust the AI system. 

(iii) We conduct a comprehensive comparative analysis 

between custom CNN and pre-trained CNN models on the 

Corn or Maize Leaf Disease Dataset, evaluating their 

performance in terms of accuracy. 

 RELATED WORK  

Ahad et al. [1] conducted a study comparing six CNN-based 

deep-learning architectures, and they found that ensemble 

models significantly improved accuracy in detecting rice leaf 

diseases. Masood et al. [2] proposed the MaizeNet model, a 

deep learning framework based on Faster-RCNN with 

ResNet-50 and spatial-channel attention for effective 

localization and classification of maize plant leaf diseases. 

Sagar et al. [3] conducted a comprehensive survey on leaf-

based plant disease detection techniques using deep 

learning models and explored the use of Explainable AI (XAI) 

to make these models more transparent. Zhengjie Ji et al. [4] 
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proposed a lightweight convolutional neural network, ICS-

ResNet, based on ResNet50, to improve the accuracy of 

maize leaf disease classification. Baliyan et al. [5] propose a 

deep learning- based CNN model for multi-classification of 

corn gray leaf spot (CGLS) disease into five severity levels, 

achieving a high detection accuracy of 95.33 percent. 

Goldwasser et al. [6] presented methods for ensuring stable 

feature rankings using SHAP and LIME by addressing the 

instability inherent in these popular attribution techniques. 

Kundu et al. [7] proposed a deep learning-based framework 

for automatic maize disease detection, severity prediction, 

and crop loss estimation, achieving a high accuracy of 98.50 

percent. Paymode et al. [8] work focuses on using VGG-

based CNNs for early detection and classification of leaf 

diseases in crops, achieving high accuracy rates of 98.40 

percent for grapes and 95.71 percent for tomatoes. 

In our research, we uniquely integrated custom CNN models 

with explainable AI techniques like SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) to enhance the transparency and 

interpretability of maize leaf disease classification. We 

provided clear insights into the decision-making process of 

the model, making our approach more reliable and 

comprehensible for end-users and researchers alike. 

 METHODOLOGIES 

3.1    | Data Preprocessing and Overview 

The Corn leaf disease dataset [11] is a comprehensive 

dataset of images designed with four classes that contain 

both healthy and disease-affected corn leaves. These 

images are crucial for training deep learning models to 

detect leaf disease, which is an essential task for enhancing 

agricultural productivity and ensuring food security. 

According to Figures 1 and 2, we use a set of images from 

all four classes in the dataset: Healthy, Blight, Common 

Rust, and Gray Leaf Spot. Each class is represented with 

distinct leaf appearances, showing the variations in disease 

symptoms. 

Blight: A condition where leaves exhibit irregular, brown 

spots. 

Common Rust: Characterized by orange or reddish 

pustules on the leaf surface. 

Gray Leaf Spot: Identified by small, rectangular lesions on 

the leaves. 

Healthy: Images of corn leaves with no visible disease 

symptoms. 

The number of images in each of the classes is divided into 

three sections: training (3254), testing (409), and validation 

(405) images. We use a total of 80% images for training, 

20% of images, and 20% images for validation purpose. The 

total number of images is 4068. 

Preprocessing is an essential step in preparing the maize 

leaf images for training the CNN model. In this study, several 

preprocessing techniques were applied to ensure that the 

data was suitable for training the model. In the preprocessing 

steps included image resizing, data augmentation 

techniques, and normalization were included. All images 

were resized to a uniform dimension to match the input 

requirements of the CNN model; we use 150X150X3. 

Normalization was applied to scale the pixel values between 

0 and 1. Additionally, data augmentation techniques such as 

rescaling, rotation, horizontal and vertical flipping, zooming, 

shear range, width and height shift, and brightness 

adjustment were employed. These augmentations artificially 

increased the diversity of the dataset, allowing the model to 

learn from a broader range of variations, which is particularly 

important for improving the model’s ability to generalize 

across different environmental conditions and disease 

manifestations. 

 

3.2    | Model Architecture 

According to Figure 2, we have developed a Convolutional 

Neural Network (CNN) for image classification into four 

categories. We use five convolutional blocks in the model 

architecture. First 4 convolutional blocks, we use two 

convolutional layers, and we use one convolutional layer in 

the last one. Each of the convolutional layers has 64 filters, a 

kernel size of (3, 3), and ReLU activation. Each block is 

followed by a max-pooling layer and batch normalization to 

enhance training stability and reduce overfitting. Dropout 

layers are strategically placed after certain convolutional and 

fully connected layers with dropout rates between 0.25 and 

0.3 to prevent overfitting. Additionally, L2 regularization 

(0.0001) is applied to the dense layers. The network 

concludes with a fully connected layer with 128 neurons 

(ReLU activation) and a softmax output layer with four 

neurons. 

Table 2 shows the figure 3 model summary. Our architecture 

effectively captures image features while maintaining model 

efficiency, ensuring performance across varying image 

categories. After that, for the compiled purpose, we use 

Adamax optimizer with an initial learning rate of 0.001 and 

 
Figure 1: Sample Dataset Visualization 
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categorical cross-entropy loss to handle the multi-class 

classification task. To enhance training efficiency and 

prevent overfitting, we also use several callback functions 

such as Learning Rate Scheduler, Reduce LROnPlateau, 

and Early Stopping. A custom learning rate scheduler was 

implemented, which exponentially decays the learning rate 

over epochs. The Reduce LROnPlateau callback monitors 

the validation loss and reduces the learning rate by a factor 

of 0.2 if the validation loss does not improve for five 

consecutive epochs, with a minimum learning rate threshold 

of 0.0001. And, we use a custom callback function, which will 

early stop when the accuracy or validation accuracy reaches 

99. The model was trained for 100 epochs with a batch size 

of 32 using these callbacks, ensuring efficient learning 

across the train- ing and validation datasets. 

DenseNet121. These models are fine-tuned on the maize 

leaf disease dataset to feature extraction capabilities. The 

choice of multiple architectures aims to compare their 

performance and adaptability in recognizing distinct leaf 

disease patterns. 

For explainable AI, we use LIME and SHAP. LIME is used to 

interpret the model’s predictions by approximating the local 

decision boundary around each prediction. SHAP values are 

computed to quantify the contribution of each pixel in the 

input image to the model’s predictions. We also use Grad-

CAM, which is used to visualize the areas of the images that 

are most influential in the model’s decision-making process. 

 EXPERIMENTAL RESULTS AND ANALYSIS 

The results of the experiments provided into three parts 

those are CNN models accuracy and report, explainable AI, 

and compare with per-trained model. Validation accuracy of 

the proposed CNN model is 92.71, test accuracy is 91.20 

and training accuracy of the model is 99.94. 

The classification report for our custom CNN model on the 

maize leaf disease dataset is presented in Table 1. The 

report includes the precision, recall, F1-score, and support 

for each class: Blight, Common Rust, Gray Leaf Spot, and 

Healthy. The model has achieved an overall accuracy of 91 

percent for Common Rust, and Healthy classes had the 

highest performance with F1-scores of 0.94 and 0.97. The 

macro and weighted averages highlight the balanced 

performance across all classes. 

The confusion matrix in Figure 4 reflects the performance of 

the custom CNN model across the four classes: Blight, 

Common Rust, Gray Leaf Spot, and Healthy. The model  

Table 1: Heading of the table 

 Precision Recall F1-Score 

Blast 0.87 0.86 0.87 

Common 

Rust 

0.93 0.94 0.96 

Gray leaf 

disease 

0.82 0.78 0.80 

Healthy  0.97 0.97 0.97 

Accuracy    0.92.71 

 

 
Figure 2: CNN Model Architecture 
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Figure 4: ROC Curve and AUC Score 

 
Figure 3: Confusion Matrix  
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Figure 5: Original and LIME for Blast 

Figure 6: Original and LIME for Common Rust 

 

Figure 7: Original and LIME for Gray Leaf Spot 
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The classification report for our custom CNN model on the 

maize leaf disease dataset is presented in Table 1. The 

report includes the precision, recall, F1-score, and support 

for each class: Blight, Common Rust, Gray Leaf Spot, and 

Healthy. The model has achieved an overall accuracy of 91 

percent for Common Rust, and Healthy classes had the 

highest performance with F1-scores of 0.94 and 0.97. The 

macro and weighted averages highlight the balanced 

performance across all classes.  

The confusion matrix in Figure 3 reflects the performance of 

the custom CNN model across the four classes: Blight, 

Common Rust, Gray Leaf Spot, and Healthy. The model 

shows high accuracy in predicting Common Rust and 

Healthy classes, with minimal misclassifications.  

According to the figure 4, the model demonstrates strong 

performance in classifying plant diseases. The micro-

average ROC curve, with an area under the curve (AUC) of 

0.99, indicates excellent overall discrimination between 

healthy and diseased plants. Individual classes also show 

high AUC values, with Common Rust achieving the best 

performance at 0.99. Blight and Gray Leaf Spot exhibit 

similarly good results, while Healthy plants are perfectly 

classified with an AUC of 1.00. 

In explainable AI, we use LIME, SHAP, and for visualization, 

we use the GradCAM method. In LIME (Local Interpretable 

Model-agnostic Explanations) visualizations, different colors 

help users understand which parts of the image are most 

influential in the model’s decision-making process. In the 

Figure 5, it represents white and green colors indicate 

positive identification of the disease in the blight class 

example image. On the other hand, dark or blue reflects that 

those areas are not affected by the disease. Figures 6 and 7, 

it show that white, green, and yellow color regions are 

disease spot, and other dark and blue areas are not affected. 

Here, figure 8, 9 each of the figure reflects the SHAP values 

each of the classes. Each of the class the first image is 

original image. This is the input image that the model is 

making predictions on. In this case, it appears to be an 

image of a leaf with some spots on it. Output 0, Output 1, 

Output 2, Output 3 are the four possible output categories of 

the model. The SHAP values will explain how the features of 

the input image contribute to the predicted probability of 

each category. At the bottom of each figure there are a scale 

called SHAP value. This is the color-coded bar. It represents 

the range of possible SHAP values, from -2 to 2. Blue SHAP 

values indicate that a feature decreases the probability of a 

category, while red SHAP values indicate that a feature 

increases the probability of a category. Red colors usually 

indi- cate pixels or regions that have a positive impact on the 

predicted class. On the other hand, Blue colors typically 

represent pixels or regions that have a negative impact on 

the predicted class.  

Another term, Grad-CAM (Gradient-weighted Class 

Activation Mapping) is a method for visualizing deep learning 

model predictions, especially for convolutional neural 

networks (CNNs) in image classification tasks. Grad-CAM 

visualizations use a heatmap to indicate the areas of an 

image that are most relevant to a model’s decision for a 

specific class. The heatmap is overlaid on the original image 

for easy interpretation. According to the figure 10, 11 it 

represent the GRAD-CAM of the corn leaf disease classes. 

Each of the figure have 3 images, first one for original, 

second one for heatmap and the last one for GradCAM 

overlay. The heatmap highlights the regions of the image 

that are most important for the model’s prediction. Redder 

areas indicate higher importance, while bluer areas indicate 

lower importance. And grad-cam overlay shows original 

image with the heatmap overlaid on top of it. This 

visualization helps to identify which specific regions of the 

leaf are contributing most to the model’s prediction. 

After that, we use 4 pre-trained models to compare and 

observe our custom model's result. So, according to Table 2, 

we found that our custom CNN model gives higher accuracy 

than the other 4 pre-trained models. 

Table 2: Model Comparison  

Model Name Accuracy Score 

Resnet50 92.12 

VGG16 87.34 

MobileNetV2 87.77 

DenseNet121 86.36 

Custom CNN Model 92.71 

 

 CONCLUSION 

In conclusion this study, we developed and evaluated a 

custom Convolutional Neural Network (CNN) model for 

maize leaf disease detection, using state- of-the-art 

Explainable AI (XAI) techniques, namely SHAP and LIME. 

Our approach aimed to not only achieve high accuracy in 

disease classification but also enhance the interpretability of 

the model’s predictions. The custom CNN model 

demonstrated robust performance with a validation accuracy 

of 92.71 percent, outperforming several established pre-

trained models such as ResNet50, VGG16, Mo- bileNetV2, 

and DenseNet121, which recorded ac- curacies of 92.12 

percent, 87.35 percent, 83.77 per- cent, and 86.36 percent, 

respectively. The model’s effectiveness was further 

confirmed through comprehensive evaluation metrics, 

including precision, recall, F1-score, and AUC, which 

reflected high performance across all disease categories. 

Future work can explore further optimization of the model, 

potentially incorporating additional environmental variables 

and expanding the dataset to improve generalization. 

Additionally, extending the integration of XAI techniques 

could provide even deeper insights into the model’s 

behavior, further supporting stakeholders in making informed 

agricultural decisions. 
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Figure 8: SHAP for Common Rust 

 

Figure 9: SHAP for Gray Leaf Spot 

 

Figure 9: GRAD-CAM for Blight Class 

 

Figure 9: GRAD-CAM for Common Rust Class 
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